
AD-Ai22 827 R MULTIPROCESS NETWORK LOGIC WITH TEMPORAL AND SPAIAL i/i
MOERLITIES REVISED(U) HARVARD UNIV CAMBRIDGE MA AIKEN
COMPUTATION LRB J H REIF ET RL. OCT 82 TR-29-82-REV

UNCLASSIFIED N88814-80-C-8674 F/G 12/, NLpENOMIEEE~E
lmII~lll



7 . .- .. .~ ..... .A. .. .W..&.0.- .

ig 12.2

11111125 1111.

MICROCOPY RESOLUTION TEST CHART
NIATIONAL BUREAU OF STANDARDS-1963-A



*1

Harvar Unvrst

Cete for Resarc



*1

A MULTIPROCESS NETWORK LOGIC WITH

TEMPORAL AND SPATIAL MODALITIES

John H. Reif

A. P. Sistla

TR-29-82

August 1982 f TC

Revised October 1982 
p

V T I C ' A 0'7

*,C
' -" - ... - 't (odes

&0,oo

speia



A MULTIPROCESS NETWORK LOGIC WITH

TEMPORAL AND SPATIAL MODALITIES*

John Reif
Aravinda Prasad Sistla

Aiken Computation Laboratory
Harvard University

Cambridge, VA 02138

Summary

We introduce a modal logic which can be used to formally reason about

synchronous fixed connection multiprocess networks such as of VLSI. Our logic

has both temporaZ and spatiaZ modal operators. The various temporal modal

operators allow us to relate properties of the current state of a given

process with properties of succeeding states of the given process. Also, the

spatial modal operators allow us to relate properties of the current state of

a given process with properties of the current state of neighboring processes.

Many interesting properties for multiprocessor networks can be elegantly

expressed in our logic. We give examples of the diverse applications of our

logic to packet routing firing squad problems, and systolic algorithms.

We show that deciding validity of a formula in our logic is not decidable.

However, we show that deciding validity of a proportional formula in our logic

with respect to a given finite network is PSPACE-complete. We also investigate

the decidability issues of different versions of this logic.

*This work wks upplorted by the National Science Foundation Grants NSF MCS79-21024
and NSF MCS79-08365 and the Office of Naval Research Contract N00014-80-0674.



SECURITY CI A$SIFICATIO,. OF THIS PAGE (1i41o Daf f.hfe,4)

REPORT DOCUMENTATION PAGE READ 14STRUCTIONSBEFORE CO.%IPI.F.TI.NG FoRp

1. REPORT NUMBER 2 60VT ACCESSION NO, S. RECIPIENT'S CATALOG NUMiEN

4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERZO

A Multiprocess Network Logic with Temporal andSpatia ModaitiesTechnical Reportr
Spatial Modalities 6. PERFORMING ORG. REPORT NUMBER

TR-29-82

7. A.TNOR(s) I- CONTRACT OR GRANT MUMSER(s)

John H. Reif N00014-80-C-0674
Aravinda Prasad Sistla

I. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

Harvard University

Cambridqe, MA 02138

1 1I. CONTROLLING OFFICE NAME AN ADORESS I2. REPORT DATE

Office of Navel Research October, 1982
800 North Quincy Street 1S. NUMSEROP PAGES

Arlington, VA 22217
14. MONITORING AGENCY NAME 6 ADORESS(I dlifferent Iom Controlling Office) IS. SECURITY CLASS. (of tis repofr)

same as above

ISS. DECLASSIFICATION7OOWNGRAOING
SCHEDULE

16. DISTRIBUTION STATCMEN T fol #hAe Report)

unliimi ted_

17. DIST AIUUTIO00 S TAT EM ENT (of& abstrae~ct eniteredin 21, ITech2rs Rpsi 160-1

umlimited

I*. SUPPLEMENTARY NOTES

I. KEY WORDS (C ntinue en eeeee ede #I n.eee1 owl #fd nftlp by look nAwhr)

modal logic, multiprocess networks, temporal modalities, spatial modalities

20. AOSTRACT (Continue on reverse aide $i noecoeesy and identlify b3 &l/oc nmc b**)

see reverse side

C,

DD I JAN 1473 EDITION OF INOV IS OISOLETE

S/N 0CO-014-Av, G I SECUIlTY CL-IASSIPICATION OP TWIS P AGE(b. i'ele. 1an ,eeJ



.6..UMV CLASSIrICA*ION OF h rSI PAGE..- a a& F uter.d)" 7
We introduce a modal logic which can be used to formally reason about

synchronous fixed connection multiprocess networks such as of VLSI. Our logic

has both temporal and spatial modal operators. The various temporal modal

operators allow us to relate properties of the current state of a given

process with properties of succeeding states of the given process. Also, the

spatial modal operators allow us to relate properties of the current state of

a given process with properties of the current state of neighboring processes.

Many interesting properties for multiprocessor networks can be elegantly

expressed in our logic. We give examples of the diverse applications of our

logic to packet routing firing squad problems, and systolic algorithms.

We show that deciding validity of a formula in our logic is not4lidable.

ever, we sh n fa proportional formula in our logic

%w ~ c a le EN 3S PACE-complete. We also investigate

"(tht.( cidability issues of difftrent versions of this loqic.

SECuRITY CLA':I . ATION Of THIS PAGE(Whet Dots EnIttej



1. Introduction. One of the fundamental models of parallel computation is a

collection of synchronous processors with fixed inter-connections. For example,

the iterative linearly connected, mesh connected, and multidimensional arrays

- of [Ko69] and [Co69], the shuffle exchange networks of [St7l] and ultracomauter

of [Sc80], and the cube connected cycles networks of [PV791.

Parallel algorithms for such networks are difficult to formerly describe

and prove correct. For example, the systolic algorithms of [KL80] are not

formally proved correct in this paper; instead they present informal "picture

proofs."

An informal description of a program or algorithm for a fixed connection net-

work would likely make reference to the spatial relationships between neighboring

processes and properties holding for all processes, as well as the transformations

over time. indeed, natuai EnIj'lbA allows expression -f spatal, m-cd -- ters

such as "everywhere", "somewhere", "across such and such connection", as well as

temporal modal operators such as "until", "eventually", "hereafter", and "next-

time". However, natural English cannot suffice for formal semantics. This paper

proposes a formal logic allowing use of these modal operators in the context of a

fixed connection network. Section 2 defines our logic's syntax and semantics.

Previous program logics contained only temporal modal operations [Pn77],

[MP81] or modal operations for the effect of program statements [FL79]. Temporal

logic has been used to reason about parallel programs; however it is impractical

to use this logic to reason about large number of processes operating synchronously

and communicating through fixed connections. Our use of spatial as well as

temporal modal operators is a new idea. (Note: our spatial modal operators

differ in an essential way from the model operators of dynamic logic; see

Section 2.3). This combination of temporal and spatial modal operators allow us

to formally reason about computations on networks with complex connections.

bw



-2-r

The contribution of this paper is more than simply the definition of our net-

work; we also describe applications and investigate its computational

complexity of its decision problems.

Section 3 describes some interesting applications of our logic to routing

on the shuffle exchange network, to the firing squad problem on a linear array,

and to stystolic computations on arrays. We felt these examples to multiprocess

networks illustrate the general applicability.

Section 4 investigates the problem of fasting validity of formulae of our

1logic. We show the set of valid formulas are Tl-complete. However, in practice

we are generally only interested in deciding validity of a proportional formula

with respect to a given finite network. We show this problem is PSPACE-complete.

Also, we show in the full paper that it is decidable to test validity of

proportional formulae with restricLed Juudall Lies (foAr example formulae wit -.ll

temporal operators, but only the "somewhere" spatial operator, and also formulae

with all spatial operators, but only the "eventually" temporal operator).

We conclude in Section 5 with a summary of our results.

2. Definition of Our Logic. We begin by describing our logic for linear time.

The end of this section briefly sketches how this logic can be extended to first

order formulae, and to branching time.

2.1. Networks. Let L be a countable set of symbols, which we call Zinks.

A network G - (P,E) contains a countable set of processes P and a partial

mapping E: L x P - P. For each process p E P and label I E L, E(I,p) is

(if defined) the process connected to p by Zink X. For example, a square

grid network might have links up, down, Zeft, and right. The links are different

from atomic programs of PDL due to the restrictions given in the next page.



-3-

2.2. Syntax of the Logic. We distinguish as temporaZ modal operators the symbols

eventua Zy, hereafter, until, and nexttime. The spatial modal operators are

omewhere, eveywhere, and any symbol in the set of links L, which we assume

contains none of the previously mentioned modal operators.

Let Jr 0 be an infinite set of atomic foronulae. Let the set of formulae

.9 be the minimal set of strings containing 0 and such that if fit f2 E r then

f I f2 E r

if E J

eventually fl E Jr

hereafter f E ar

f until f ( 2
nexttime f E Jr

somewhere f1 E Jr

everywhere f E 9r

Ifl E r for each link I E L

2.3. Semantics of Our Logic. Let a model aR be a 5-tuple (S, ', A, G, w) where:

i) S is the set of state8

(ii) ': S 2 ro

(iii) A: (L U {nexttime) x S - S, is a partial function

(iv) G ( (P,E) is a network, and

(v) W: S -' P.

Thus for each state s E S, T(s) is the set of atomic formulas which hold

at s, and v(s) is the process associated with state s. Also, A(nexttime, s)

is the state occurring in the time instance just after state s, and A(,s) is the

current state of the process connected to process T(s) by link I.

We extend A as a partial mapping to the domain (L U {nexttimel)* x S so that

for all s 6 S A(C,s) - s, and A(1 *02t s) is defined iff A l,S) and



-4-

A{U 2 , A(Ils)) are defined and in this case A( 1 Ot2 ,s) = A(2 " z(1 s)).

Similarly we also extend E as a partial mapping to the domain L* x P.

A model .A is proper iff

Rl: For each link A E L and each state s E S, A(l onexttime,s) = A(nexttime ot, s)

(thus nexttime counutes with respect to each link; this presumes the processes

are synchronous).

R2: For each state s E S, A(nexttime,s) is defined and w(s) ir(A(nexttime, s))

(thus the name of each process is invariant over time).

R3: For each state s E S and link Z E L, E(X, W(s)) is defined iff

A(l, s) is defined and in this case, E(1, W(s)) = w(MI(, s))

(thus processes associated with states are connected by th same links as

in the network G)

R4: For any U,00 E L* and states s,s' E S if E(c1,7r(s)), E(c',W(s')) are

dcfind and E(rx;w(q)) = (',V(s')) then A(c9,s) =(C',s')

(thus the relationship between the states of two processes is independent of

the particular paths of links over which they are connected.)

R5: If ( = We's2) then for some i t 0 A(nettme , s s2 or

h (nxttzme , s2  =s .

Hereafter, we consider only proper models.

Let us fix the model aV. We define truth of a formulae at a given state

sE S by structural induction.

For each atomic formula F E jr, s 1= P iff F E T(s). For any formulas

Vl f2 E

s. f 2 iff s f and s 9f2

s fl iff a V fl

s I- nexttime f iff A(nexttime, s) I= f

ks 9 eventuaZZy f1  iff 3kO A(nexttimek , s) 9 f

k
9 1- hereafter f1 iff Vk 2! 0, A(nexttime f )9



-5-

s fl Iuntil f 2  iff k 2t 0 A(nexttimeks) f 2  and

Vi, 0 < i < k, A(nexttime, s) .f

i I. If iff A(L,s) is defined and A(1,s) I= f

s 1 somewhere f1  iff Ba E L*, such that A(a,s) is defined and A(c,s) =f

s eveywhere fl iff Va E L* (A(a,s) is defined . A(a,s) I- fl )

We let denote truth with respect to a given model W4'.

2.4. Decision Problems. Formula f E j is satisfiabZe (valid) if s I f

for some (all, respectively) model ,W and state s. Given a network G,

formula f E Jr is G-satisfiable (G-vaZid) if s I f for some (all,respectively)

models A' and state s with given network G.

2.5. Extensions to a First Order Logic. The first order version of this logic

consists of the additional symbols like local variables, global variables, constant

symbols, function and relation sysbols, and the universal quantifier V. A term

is defined as in the case of first order predicate calculus. An atomic formula

is an atomic proposition or of the form R tlt2 ...tk where R is k-any relation

symbol (R can be equality in which case k = 2). The additional requirement

for the set of formulae is that if f is a formula and x is a global variable

so is Vx(f). A model W is a 5-tuple (E, S, A, G, w) where E = (D, a,O) in

which D is a countable domain in which the variables take values, a interprets

relation and function symbols, 8 is a mapping associating with each global variable

and constant symbol a value from the domain; S is the set of states where each

state is a mapping that associates a truth value with each atomic proposition and

a value from D with each local variable; A, G, 7r are the same as in the

propositional case. A proper model should satisfy the same conditions as for

propositional case, modified in a natural way. We consider only proper models.

Truth of an atomic formula in a state of a model is defined as in the case of

first order predicate calculus; and truth of a formula in a state of a model is

defined ii 'uctively as in the propositional version with the following addition;



-6-

AS I VX f iff for each c C D 4C,s f 1 where. c  is exactly same as

except that the global variable x is given the value c in A . Satisfiablity

and validity of formulae art defined as usual.

2.6 Extensions to a Branching Time Logic. We can easily extend our logic to a

branching time logic, as in [BMP81].

3. Applications

This section gives some examples of the use of our logic to various multi-

process network applications.

3.1 Routing on a Shuffle-Exchange Network.

A Shuffle-Exchange network G = (PE) where P = {0 ,1 rn  and

E: e.vtr)'7%e, shuffZe) x P -, P

is defined as follows:

E(exchange, (an_1ia_ 2 ,... ,a0)) = (a_lan_2,-.. Pa 0

E(shuffne, (anDan_2,...,a0)) = (a0 ,an,.,a)

n-10 n-i 2#..1

for all a n-,an 2 ,...,a 0 C {0,1.

Intuitively, the exchange edge connects processes p1  and p2  if all the bits of

P and p2  are the same excepting the least significant bits which are distinct.

The shuffle edge connects two processes p1  and p2 , if p2  is obtained by one

cyclic shift of bits in p1 .

The routing problem in this network is to route a packet present at some process

to a given destination traversing only along the shuffle and exchange edges.

We capture the name of a process by the atomic propositions AnilAn2 .

The formula f asserts that the name of a process is invariant over time;
0

f0 (hereafter Ai v hereafter iAi)

Oi<n

fl' f2 assert that exchange and shuffle edges are properly connected.

• , mnU auun n /i i H l mm'd, h I m N Ib lN R / .. .' ' 
' '

'f2- :



L* -7-

1~ l.-Ai.-exchange Ai) AA-'eXChange AO

l_ i<n

f = (Ai- shuffle A (i-i) mod n

0<i<n

The presence of the packet at any process will be indicated by the atomic

proposition X, and the destination by Dn~l,D 2 ,... ,D0 . We assume that the name

of the destination travels with the message.

go = X A A (A =everywhere (x>A i ) A (-IA i Deverywhere (X DIA) )

(i<ni

asserts that X is true at at most one place.

go =XAA ( D. Dhereafter everywhere ( D. D.)) A
0 i<n L ID. : hereafter everywhere (X D ID.))

1 1

asserts that the name of the destination process travels with the packet.

a2 -X Dnettime (X v (shuffle X) v exchange X)

asserts that the packet travels along shuffle or exchange edges only.

The main correctness property is g3 which asserts that the packet reaches

its destination eventually.

g3 =XA A (A. D.)
Oi n- 1

Let r be a formula which describes the actual routing algorithm. Then

(hereafter everywhere (r A f 0  f 1  f 2 A g0 A gI)) Deventually smewhere g3

is a valid formula iff the algorithm correctly routes packets.

Next we describe a specific routing algorithm for the shuffle exchange network

and derive the corresponding formula r for its semantics. The packet will be

routed in n stages, where for i=0,...,n-l, if at the start of the i-th stage

the packet is located at a process whose lowest order address bit is not the

value of Di, then the product traverses an exchange link. In either case, the

product next traverses a shuffle link and reaches the i+1 stage.1'



.: -8-
I r

To define a formula r for this routing algorithm, it is useful to introduce

proportional variables SO,...,S 1  and require that only unique S. be true at

1

any processes, and that the S be invariant or traversing an exchange link but r

that S(i+l)mod n be true on traversing a shuffle link. Thus we let

r0 .= V (s i A A is) A (nexttime exchange S.) AOi<n 01j<n

iY1j (nextime shuffie S(i+l)mod n

The formula for semantics of this routing algorithm is therefore:

r= r0 A(X M V (Si A((A0 4-D i mnexttime exchcmgeM)Oi<n

A ((A 0 4*-pDi ) nexttime shujff i(X)))

3.2 The Firing Squad Problem for a Linear Array. We briefly describe the problem
and show how its correctness can be specified by our logic. A solution to the

firing squad problem consists of a linear array of deterministic finite state

processes as shown in figure 1. The next move of each process is a function ot its

present state and the states of its neighbors. All the privates are identical

processes. The problem is to obtain the program for the lieutenant, the sergeant

and the privates so that when even the lieutenant is in a designated initial state,

then eventually all the processes simultaneously enter a special state called

the firing state, and non of them enters this state before this time. The solution

should work for linear arrays of aZZ sizes.I

right right right right

lieutenan se ge.

left left left left

Figure I

We assume that all processes have states sets Q = {0,1,2,...,m), and

the state 0 is the initial state of each process. State 1 is the specific

state into which the lieutenant enters to start the operation, state m is the

firing state. All the privates are identical. We use atomic propositions

POO 'pm to indicate the state of an process (Pi is true at a place iff

the corresponding process is in a state i at that instance). Now we assert ther -.. . _ / - / • z .. .. _



-9-

the operation of the system as follows.

(i) '' "asserts that each process is in at most one state at any instant of

time.

S= everywhere hereafter [ (P. M - P

0i,j -<k

i,'

(ii) f asserts that the moves of lieutenant is according to its next move

partial function : 2 - Q "

f = everywhere[Zeft(true) n ((P0 V PI) A

hereafter A ((P1 A right P.) nexttime P 8ojj)
i~0

Note that ,Zeft(true) is true only on the lieutenant, the left most

processor.

(iii) Similarly let' fl, f2 be the formulae that define the moves of all privates

and the sergeant respectively. The positions of privates is identified by

the truth of the formula

(left(true) A right(true)).

Note that the position of the sergeant is identified by the formula

-irght(True).

(iv) Let g0 be the formula that asserts that if any process (other than the

lieutenant) and all its neighbors are in state 0 then it remains in state

0 in the next step. It is easily seen that this can also be asserted.

Now we assert that if all the above conditions are met and at any time the

lieutenant enters the state 1 then all process will eventually enter the firing

state simultaneously at some future instance, and none of them will be in the

firing state before that instance. This is captured by the formula g.

g- (I A fo fA gO) hereafter [ 8omewhere(iZeft(true) A Pl) m
((.,somewhere P) until (everywhere P ))]

m m



-10-

g is valid on all models with linear arrays as networks iff the given

solution to the firing squad problem is correct. A similar construction can be

given for the firing squad problem over any given network.

*3.3 Systolic Arithmetic Computations. The systolic algorithms of [KL80 are not

formally proved correct in their paper; instead they present informal "picture

proofs". Our logic is thus particularly useful here when extended to first order

formulae (as described in Section 2.5).

We consider an interesting example of a network for matrix-vector multiplica-

tion due to [KL80]. The matrix is an infinite band matrix of bandwidth (n+l).

The network architecture is shown in figure 2.

n

input input it.,Put input

0 2pn

left left f

Figure 2

The main processors are P0 P'1 ... P " The processors P' p'"Pn
n ;I pit... n

are the input processors, each of them contains a variable Z. The values of Z

in PI change with time and they represent the values of the i diagonal of

the matrix. Each processor Pi has two variables X, Y. The values of the

variable X in P0 over time represent the input vector. The values of X

move right with each time instance.

Thus

gl " Zeft (true) YVa ((Zeft (x a) 4- nexttime x WI))

asserts that the value of X at the nexttime instance in a process P. (i > 0).

is the present value of X in the process left to Pi"



-11-

At each step P(i< n) computes its value of Y to be the sum of the

previous value of Y in process P plus the product of X in P. times Z
i+11

in Pj. This is captured by

g right (true) m VV0 (right (Y = l nexttime input (Z = 8)

mnexttime (Y = a + x-8 )

At each step P computes its value of Y to be the product of the value ofn

X in P and the value of Z in P'. This can also be easily asserted by formulan n

3= right(falsr.) A input(true) zVOcV$(X =a input(Z = 8)) nexttime (Y =-.8fl.

(note that right(false) A input (true) holds only for process P
n

The correctness property at P n can thus be expressed in our logic as

hereafter everwhere (g IA g2 A g3) hereafter h

where

h - left (false) A input (true) M
n n+i 2n

Vco...anV0...8n (.A nexttim, (X=CL) Anexttsme (z-8.) 1 nexttime (Y a=- ' .)
i=O i=o

4. Decidability and Complexity Issues. In this section we consider issues

of decidability and complexity of different versions of our logic. Recall that a

formula is said to be satisfiable iff there exists a model and a state at which

the formula is true. A formula is said to be valid if it is true in-all states of

all models. We say that a formula is satisfiable (valid) on finite networks if

the formula is true in a (all) model with finite networks.

THEOREM 1. The set of satisfiable formulae of multiprocessor network logic

ie E-complete and the set of valid formulae is Rl-complete.

Proof sketch% First we show that the set of satisfiable formulae is a 1

--complete set. From this result it can easily be shown that the set of valid

1* formulae is 11i-complete.



-12-

We consider a deterministic Turing machine M on infinite strings. M has

one read only infinite input tape, and an infinite work tape. An infinite string

is input to m on its input tape. M never halts. M is said to accept an input

if during its computation it goes into any of a set of final states infinitely

often. The set of encodings of all Turing machines that accept at least one input,

is shown to be -complete in [SCFG82]. We reduce this set to the set of satis-

fiable formulae. An ID of M is the part of input is seen thus far, the contents

of the work tape, the position of the head on the work tape. We define a sequence

of IDs of H during its computation on an input and express this sequence using

a formula in the logic. We also assert that in this sequence final IDs (IDs having

a final state) appear infinitely often. Thus given an encoding of a Turing machine

we obtain a formula that is satisfiable iff the Turing machine accepts at least

one input. The details will be given in the full paper. 0

Let = S, 7, A, G, r) be a model where G = (P,E) is a finite network.

Let *: P 4 S. * is said to be consistent with elY, if w(O(p)) = p for all

p E P, and for all pi' P if p j E(I, pi) for some I E L, then

p = A(M, *(p.)). Let 4) - {f 0 is consistent with .f 1, and let

next: C)- be such that for all 0 E 4D and for all p next(o) (p) =

A(nexttime, *(p)). . is said to be ultimately periodic with starting index i

*i i+M
and period m, if for all 0 E oD next ($) next (0) for all i 2 £. For

any formula f, let SF(f) be the set of subformulae of f, and for any E C 4 , let

SF(f)[] P # 2 such that (0](p) = {g I g E SF(f) and O(p) I= g). We require

a technical lemma characterizing satisfiability.

LEMMA 1. f is eatisfaible in a model over a finite netwo-k iff f is

eatisfiable over an ultimately periodic model over a finite network. a



, . = • -, . -& . . . _ -_ . _ - _ . _ . . . - . _ - . .4 . . , ._ , -.. .- -,,-. . - - -. - - .

-13-

THEOREM 2. The set of formulae that are satisfiable in a model over a finite
network is EO-complete, and the set of valid formulae in models over finite net-

-. 0
works is it-complete.

11

Proof: As in the previous theorem, we can reduce the halting problem of

Turing machines over finite strings to the set of satisfiable formulae in a model

over a finite network. We qive a Turing machine M which accepts the above set.

M guesses a finite network and an ultimately periodic model over this network.

It next verifies that f is satisfiable in this model. M halts only on the input

formulae that are satisfiable in a model over a finite network.

THEOREM 3. The follo ing problem is PSPACE-Complete. Given a finite network

G, and a formula f, is f satisfiable in a model over the network G?

Proof: The PSPACE-hardness of the problem follows from the PSPACE-hardness of

satisfiablility for linear time temporal logic [SC82]. We give a polynomial

space bounded Turing machine M that checks if f is satisfiable in a model

over the network G. M guesses (0], and verifies for consistency and that

f E [f](p) for some p E P. At each subsequent instance m guesses [next(o)]

and checks that it is consistent with [*] . It continues this each time keeping

[0] and [next](0). At a certain instance it guesses the beginning of the period

and saves the corresponding [0]. It continues the previous process, each time

guessing either [next(f)] or guessing that it is the end of the periodic part.

In the latter case it takes [next(o)] to be the saved value at the beginning of the

period. Each time M guesses [next($)] it verifies that [ ] is consistent

'II

.: / ; : :. . : .: : : : :



-14-

with (next(f)]. M also verifies that certain formulae are fulfilled in the

periodic part. M clearly uses space polynomial in the size of G and the size r

of f. Further, we can show: 0

THEOREM 4. The set of valid forzulae of first order multiprocessor network

logic over models on finite networks is i -co.zete. o

5. Conclusions. We have proposed a logic to reason about computations of multi-

processor networks. We feel that our logic will be useful to specify the semantics

and prove correctness of multiprocess networks. No such formal system for multi-

processor networks had been proposed previously. We have examined the application

of our logic to some diverse multiprocess network proble- s, wad presentcd somc

results in decidability and complexity of our logic.

U t!

I

• iI



-15-

Bibliography

(MPel] M. Ben-ari, Z. Manna, A. Pnueli, "The temporal logic of branching time",
8th ACM Symposium on Principles of Programming Languages, Williamsburg,
VA, 1981.

[CE81] E. M. Clarke, A. Emerson, "Design and synthesis of programming
skeletons using branching time temporal logic", IBM Conference of
Logics of Programs, May 1981.

[Co69] S. N. Cole, "Peal time computations by n-dimensional iterative arrays
of finite state machines, IEEE Trans. on Computers, 18 (1969)
pp. 349-365.

[FL791 M. Fischer, R. Ladner, "Propositional dynamic logic of regular programs",
JCSS, 18(2), 1979.

[GPSS] D. Gabbay, A. Pnueli, S. Shealah, J. Stavi, "Temporal analysis of
fairness", 7th ACM Symposium on Principles of Programming Languages,
Las Vegas, NV.

[HR81] J. Y. Halpern, J. H. Reif, "The propositional dynamic logic of deter-
ministic, well-structured programs", 22nd Symposium on Foundations of
Computer Science, Nashville, TN, 1981.

[MP81] Z. Manna, A. Pnueli, "Verification of concurrent programs", The
Correctness Problem in Computer Science, Academic Press, London, 1981.

[Ko69] S. R. Kosaraju, "Computations on iterative automata", Ph.D. Thesis,
University of Pennsylvania, PA, 1969.

(Pn77] A. Pnueli, "The temporal logic of programs", Proceedinqs of 18th
Symposium on Foundations of Computer Science, Providence, RI, Nov. 1977.

[PV79] F. P. Preparata, J. Vuillemin, "The cube connected cycles: a versatile
network for parallel computation", FOCS 1979, pp. 140-147.

[Sc80] J. T. Schwartz, "Ultracomputers", ACM Trans. on Programming Languages
and Systems, Vol. 12, No. 4, Oct. 1980, pp. 484-521.

[SCFG82] A. P. Sistla, E. M. Clarke, N. Francez, Y. Gurevich, "Are message
buffers characterizable in linear temporal logic?", Proceedings of the
Symposium on Principles of Distributed Computing, Ottawa, Canada,
August 1982.

[SC82] A. P. Sistla, E. M. Clarke, "The complexity of propositional linear
temporal logics", ACM Symposium on Theory of Computing 1982, pp. 159-167.

[t7l] H. S. Stone, "Parallel processing with the perfect shuffle", IEEE Trans.
on CoTputers, Vol. C-20, No. 2, Feb. 1971, pp. 153-161.

6 ", ' ," * ' : ; h. ',,i .. a l ll a ,d ., ' ,e... - 'm i 1



FILMED

DTIC


